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Introduction
In this project we wished to analyze song lyrics of popular songs now and over time. We decided to use the Billboard Top
100 chart and genre specific charts as our main metric of popularity and supplemented that with Spotify popularities for all
of the current songs. We wanted to create an interesting dataset from scratch and we thought that combining Billboard
charts and Spotify popularity scores would be a new and interesting way to analyze popular music based on lyrics. This is a
relevant topic to explore because, at the end of the day, everyone listens to music and lyrics play an important role in our
culture. This is an important inquiry in data science because if certain trends in popular songs are identified, it could help
produce more new, popular songs. We wanted to look at the following questions:

1. How similar are songs on the Billboard Top 100 chart and genre specific charts to each other in terms of lyrics?
2. How has the level of profanity present in songs on the Billboard Top 100 chart changed over the last 14 years, and does

this correlate with Billboard ranking?
3. What are the most common words found in the Billboard Top 100 chart and genre specific charts? Are they the same or

does it differ based on genre?
4. Can we train a model to guess what the rank of a current song on the Billboard Top 100 chart is based solely on the

most frequent lyrics of its chart?
5. Can we guess which song in the Billboard Top 100 chart somebody is describing by only having them input a few

words?
6. Does the popularity of a song on Spotify correlate to the ranking of the song on the Billboard Top 100?

In [49]: %%capture
!pip install spotipy
!pip install billboard.py;
!pip install lyricsgenius;
!pip install nltk;
!pip install matplotlib;
!pip install seaborn;
!pip install profanity-check

Required libraries: spotipy, billboard, lyricsgenius, nltk, matplotlib, seaborn, profanity-check



In [63]: %%capture
import requests
import pandas as pd
import numpy as np
import billboard as bb
import lyricsgenius
import seaborn as sns
import sqlite3
import matplotlib.pyplot as plt
import nltk
from sklearn.feature_extraction.text import CountVectorizer
import spotipy
from spotipy.oauth2 import SpotifyClientCredentials
from sklearn.feature_extraction.text import TfidfVectorizer
import nltk
nltk.download("stopwords")
from nltk.corpus import stopwords
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
from profanity_check import predict, predict_prob

Data Gathering
The hardest part of this section of the project was the data collection. We wanted to combine various different data sources
in order to do more meaningful analysis. We decided we wanted to analyze the Billboard Top 100 chart and the charts for
the top songs in the following genres: rap, pop, country, and rock as they are some of the most common and popular music
genres currently. Scraping the Billboard website gave us the rank of a song in a particular chart, the song’s title, and the
song’s artist(s). We then used the song title and artist to query the genius.com API for lyrics to every song. It took a long
time to find an API that could be easily used to fetch all of the lyrics to each song with the information we had from the
Billboard website. We tried numerous different APIs and websites such as azlyrics and Musixmatch before settling on
genius.com. The only drawback of this API is that it gets rate limited and is fairly slow. In addition, we wanted to gather
information about each song’s Spotify popularity in order to see whether rankings of songs correlated with Spotify
popularity or not. After these steps we had all of the songs, lyrics, ranks, and popularities for each current chart, but we also
wanted to analyze trends over time for the Billboard Top 100 songs. This particular dataset that we constructed has almost
two thousand entries, and so querying the lyrics for each song took an immense amount of time. For this reason, we chose
to store the historical data in a SQLite database.

In [3]: genius = lyricsgenius.Genius("") #insert API key here
genius.verbose = False # Turn off status messages
genius.remove_section_headers = True # Remove section headers (e.g. [Chorus]) fro
m lyrics when searching
genius.skip_non_songs = False # Include hits thought to be non-songs (e.g. track
 lists)
genius.excluded_terms = ["(Remix)", "(Live)"] # Exclude songs with these words in 
their title 
 
client_credentials_manager = SpotifyClientCredentials(client_id = "", client_secr
et = "") # insert API keys here
sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager)

[nltk_data] Downloading package stopwords to /home/jovyan/nltk_data... 
[nltk_data]   Package stopwords is already up-to-date! 



The above cell sets up using the genius API to get lyrics for specific songs. One would need to replace "Api Key" with their
own genius API key in order to use the API. If you want to know more about the genius api you can find information about it
here: https://docs.genius.com/ (https://docs.genius.com/). If you want to know more about the lyricsgenius python library
that wraps the genius API you can find more about it here: https://github.com/johnwmillr/LyricsGenius
(https://github.com/johnwmillr/LyricsGenius). We tried using many different lyrics sites/APIs to get the lyrics such as
Musixmatch or azlyrics, but we ran into the problem that you needed a paid API key to get access to all of the lyrics or that
the search function for songs did not work with the way Billboard formulated the Song artist and title.

We use a python wrapper for the Spotify API called spotipy . The documentation for spotipy  can be found here:
https://spotipy.readthedocs.io/en/latest/#non-authorized-requests (https://spotipy.readthedocs.io/en/latest/#non-
authorized-requests). The documentation for the Spotify API as a whole can be found here:
https://developer.spotify.com/documentation/web-api/ (https://developer.spotify.com/documentation/web-api/)

In [4]: def create_songs_df(chart_name): 
    top100 = bb.ChartData(chart_name) 
    songs = top100.entries 
    dataframe = {"Rank": [], "Title": [], "Artist": []} 
    for song in songs: 
        dataframe["Title"].append(song.title) 
        dataframe["Artist"].append(song.artist) 
        dataframe["Rank"].append(song.rank) 
    df = pd.DataFrame(dataframe) 
    return df

The above cell allows for creation of dataframes to store different charts from the billboard website. We used a 
billboard  python package that you can find more information about here https://github.com/guoguo12/billboard-charts

(https://github.com/guoguo12/billboard-charts). This method creates a dataframe for a specific chart with columns for song
title, song artist, and the rank of the song on the chart and then returns the dataframe.

In [5]: top100 = create_songs_df("hot-100")
country = create_songs_df("country-songs")
rock = create_songs_df("rock-songs")
pop = create_songs_df("pop-songs")
rap = create_songs_df('rap-song')

Here we load in five different billboard top100 charts that we will use later to perform our analysis. If you want to explore
Billboard's website you can view it here: https://www.billboard.com/ (https://www.billboard.com/) and you can find more
information about how the charts are actually compiled here: https://www.billboard.com/p/billboard-charts-legend
(https://www.billboard.com/p/billboard-charts-legend).

In [6]: def try_load_lyrics(title,artist): 
    try: 
        return genius.search_song(title, artist).lyrics 
    except: 
        return "Failed to Find Lyrics"

In [7]: def populate_chart_with_lyrics(chart): 
    chart["lyrics"] = chart.apply(lambda x: try_load_lyrics(x["Title"],x["Artist"
]), axis = 1) 
    return chart

https://docs.genius.com/
https://github.com/johnwmillr/LyricsGenius
https://spotipy.readthedocs.io/en/latest/#non-authorized-requests
https://developer.spotify.com/documentation/web-api/
https://github.com/guoguo12/billboard-charts
https://www.billboard.com/
https://www.billboard.com/p/billboard-charts-legend


The above methods are used to add a column to a dataframe for the lyrics of each song using the genius API.

In [8]: top100 = populate_chart_with_lyrics(top100)
rap = populate_chart_with_lyrics(rap)
pop = populate_chart_with_lyrics(pop)
country = populate_chart_with_lyrics(country)
rock = populate_chart_with_lyrics(rock) 
 
display(top100.head(10))

Rank Title Artist lyrics

0 1 Heartless The Weeknd Young Metro, young Metro, young Metro
(Sheesh)...

1 2 Circles Post Malone Oh, oh, oh\nOh,  oh, oh\nOh,  oh, oh, oh, oh\n...

2 3 All I Want For Christmas Is You Mariah Carey I don't want a lot for Christmas\nThere is jus...

3 4 Someone You Loved Lewis Capaldi I'm going under, and this time, I fear there's...

4 5 Memories Maroon 5 Here's to the ones that we got\nCheers to the ...

5 6 Good As Hell Lizzo I do my hair toss, check my nails\nBaby, how y...

6 7 Roxanne Arizona Zervas All for the 'Gram\nBitches love the 'Gram\nOh ...

7 8 Rockin' Around The Christmas
Tree Brenda Lee Rockin' around the Christmas tree\nAt the Chri...

8 9 Lose You To Love Me Selena Gomez You promised the world and I fell for it\nI pu...

9 10 10,000 Hours Dan + Shay & Justin
Bieber

Do you love the rain, does it make you
dance\n...



def getSongRanks(year): 
   r = requests.get(f"https://www.billboard.com/charts/year-end/{year}/hot-100-song
s") 
   if r.status_code != 200: 
       print(f"Failed on year {year}") 
       return 
   time.sleep(2) # If I remove this I get a "Too Many Requests" error from billboar
d.com 
   soup = BeautifulSoup(r.text, 'html.parser') 
   ranks = soup.find_all("div", {"class": "ye-chart-item__rank"}) 
   titles = soup.find_all("div", {"class": "ye-chart-item__title"}) 
   artists = soup.find_all("div", {"class": "ye-chart-item__artist"}) 
   ranks = [rank.text.strip() for rank in ranks] 
   titles = [title.text.strip() for title in titles] 
   artists = [artist.text.strip() for artist in artists] 
   songs = list(zip(ranks, titles, artists)) 
   print(f"Done with year {year}") 
   return songs 

ranks = pd.DataFrame(columns=["Title", "Artist", "Year", "Rank", "lyrics"]) 

year_range = range(2006, 2020)
for year in year_range: 
   top = getSongRanks(year) 
   for (rank, title, artist) in top: 
       ranks = ranks.append({"Title": title, "Artist": artist, "Year": year, "Rank": 
rank, "lyrics": np.nan}, ignore_index=True)

The code in the code block above is the key for building that database. Some boilerplate code was left out for brevity. We
use this database to examine two relationships: the use of profanity in song lyrics for the Billboard Top 100 over the past 14
years, and the relationship between profanity in song lyrics and the Billboard Top 100 ranking.

In [9]: def get_spotify_popularity(title): 
    title = title.replace("$","s") 
    answer = sp.search(title, type="track", limit = 1) 
    track = sp.track(answer["tracks"]["items"][0]["id"]) 
    return track["popularity"]

The above method gets the Spotify popularity associated with a specific song. The popularity metric on Spotify is a number
between 0 and 100 based on how many plays the track has and how recent those plays are. The algorithm is not publically
available, but if you want to look at the API documentation it is here: https://developer.spotify.com/documentation/web-
api/reference/tracks/get-track/ (https://developer.spotify.com/documentation/web-api/reference/tracks/get-track/).

In [10]: def populate_chart_with_spotify_popularity(chart): 
    chart["spotify_popularity"] = chart.apply(lambda x: get_spotify_popularity(x[
"Title"]), axis = 1) 
    return chart

https://developer.spotify.com/documentation/web-api/reference/tracks/get-track/


This method adds a column to an existing dataframe of a music chart with the Spotify popularity of each song.

In [11]: top100 = populate_chart_with_spotify_popularity(top100)
rap = populate_chart_with_spotify_popularity(rap)
pop = populate_chart_with_spotify_popularity(pop)
country = populate_chart_with_spotify_popularity(country)
rock = populate_chart_with_spotify_popularity(rock) 
 
display(top100.head(10))

Top Music Chart NLP and Analysis
We wanted to look at the relationship between Billboard chart rankings and Spotify popularity ratings, so we explored the
data by creating a scatter plot of ranking versus popularity for each chart we were looking at. This gives us a quick visual
view of whether or not the chart rankings and popularity ratings are related as we would expect them to be. We then set up
two methods to create a term document frequency matrix (tdf) and a term document inverse document frequency matrix (tf-
idf), which are two common natural language process methods for looking at and analyzing data. Both of these concepts
are explained further below. We then used cosine similarity to determine how similar songs in the same chart were to each
other and whether certain charts were much more similar than each other. We thought that we would see that many songs
in the same genre would contain very similar words in their lyrics. We used barplots to quickly visualize this data and draw
conclusions from it. In addition, we looked at what two songs were the most similar to each other in each chart to see if two
very similar songs, in terms of lyrics, would both be popular at the same time. We thought it would also be interesting to get
a quick view of what percentage of the songs on the Billboard Top 100 chart came from the 4 other genre specific charts we
were looking at for our analysis and to visualize this in a bar chart.

Rank Title Artist lyrics spotify_popularity

0 1 Heartless The Weeknd Young Metro, young Metro, young
Metro (Sheesh)... 94

1 2 Circles Post Malone Oh, oh, oh\nOh,  oh, oh\nOh,  oh, oh,
oh, oh\n... 99

2 3 All I Want For Christmas Is
You Mariah Carey I don't want a lot for Christmas\nThere

is jus... 95

3 4 Someone You Loved Lewis Capaldi I'm going under, and this time, I fear
there's... 96

4 5 Memories Maroon 5 Here's to the ones that we got\nCheers
to the ... 100

5 6 Good As Hell Lizzo I do my hair toss, check my
nails\nBaby, how y... 86

6 7 Roxanne Arizona Zervas All for the 'Gram\nBitches love the
'Gram\nOh ... 98

7 8 Rockin' Around The
Christmas Tree Brenda Lee Rockin' around the Christmas tree\nAt

the Chri... 90

8 9 Lose You To Love Me Selena Gomez You promised the world and I fell for
it\nI pu... 98

9 10 10,000 Hours Dan + Shay & Justin
Bieber

Do you love the rain, does it make you
dance\n... 94



In [281]: plt.scatter('Rank', 'spotify_popularity', data=top100)
plt.title('Rank vs Spotify Popularity in Top 100 Chart')
plt.show() 
 
plt.scatter('Rank', 'spotify_popularity', data=rap)
plt.title("Rank vs Spotify Popularity in Rap Chart")
plt.show() 
 
plt.scatter('Rank', 'spotify_popularity', data=pop)
plt.title("Rank vs Spotify Popularity in Pop Chart")
plt.show() 
 
plt.scatter('Rank', 'spotify_popularity', data=country)
plt.title("Rank vs Spotify Popularity in Country Chart")
plt.show() 
 
plt.scatter('Rank', 'spotify_popularity', data=rock)
plt.title("Rank vs Spotify Popularity in Rock Chart")
plt.show()





In the charts above, we explore the relationship between the chart ranking and the level of popularity on Spotify for multiple
genres and the Top 100 chart. We expected that the well-ranked songs would also be heavily listened to recently on Spotify.
This absolutely turned out to be the case, especially with the very well-ranked songs in the first through tenth ranking spots
for all of the genre charts and the Top 100 chart. Surprisingly, this was more so the case with specific genres, namely rap
and pop, than it was in country and rock. This could likely be explained by the fact that more people that use Spotify listen
to rap and pop than country and rock, so these genres likely suffer an inherent Spotify popularity point loss (we guess this
since the Spotify documentation states that they use number of listens, in part, to determine a song's Spotify popularity).

In [13]: def create_term_doc_matrix(chart): 
    lyrics = chart["lyrics"].to_list() 
    vec = CountVectorizer() 
    X = vec.fit_transform(lyrics) 
    termdocmatrix = pd.DataFrame(X.toarray(), columns=vec.get_feature_names(), in
dex=chart.Title) 
    return termdocmatrix



In [14]: top100 = top100[top100.lyrics != "Failed to Find Lyrics"]
create_term_doc_matrix(top100).head()

This method creates a term-document matrix, which is a matrix that has every word in every song in the dataframe as a
column and then the count of how many times each word appeared in a specific songas the value for each row, which in
our case is a song. If you want to read further about term-document matrices here is a short blog post that explains the idea
https://www.darrinbishop.com/blog/2017/10/text-analytics-document-term-matrix/
(https://www.darrinbishop.com/blog/2017/10/text-analytics-document-term-matrix/).

In [15]: def create_tfidf(chart): 
    lyrics = chart["lyrics"].to_list() 
    vectorizer = TfidfVectorizer() 
    doc_vec = vectorizer.fit_transform(lyrics) 
    tfidf = pd.DataFrame(doc_vec.toarray().transpose(), index=vectorizer.get_feat
ure_names()) 
    tfidf.columns = chart["Title"] 
    return tfidf

In [16]: tfidf = create_tfidf(top100)
tfidf.head()

Out[14]:
000 02 10 100 101 10k 11 12 12am 14 ... yvncc zaar zella zervas zhu zombie zoo

Title

Heartless 0 0 0 0 0 0 0 0 0 0 ... 0 1 0 0 0 0

Circles 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0

All I Want
For

Christmas
Is You

0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0

Someone
You

Loved
0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0

Memories 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0

5 rows × 4161 columns

Out[16]:

Title Heartless Circles

All I Want
For

Christmas
Is You

Someone
You

Loved
Memories

Good
As

Hell
Roxanne

Rockin'
Around

The
Christmas

Tree

Lose
You

To
Love

Me

10,000
Hours ... Foll

G

000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...

02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...

100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...

101 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...

5 rows × 100 columns

https://www.darrinbishop.com/blog/2017/10/text-analytics-document-term-matrix/


This method creates a term frequency-inverse document frequency (tf-idf) matrix. This is done by multiplying the term
frequency score for each value by the inverse document frequency score of each value. The term frquency is calculated for
each word in each song by counting the number of times the word appears in the song and dividing it by the total number
of words in the song. The idf score is the inverse document frequency of a word, which is defined as the log(# of documents
or in this case songs/ # of documents with the word in them). These matrices are used to determine the importance of a
word to a song based off how often it is used in the song itself and in the other songs in the dataframe. A word is more
important if it is only used by a single song in the dataframe. If you want to read more about tf-idf matrices here is a good
resource: http://www.tfidf.com/ (http://www.tfidf.com/).

In [17]: def average_cosine_similarity(tfidf): 
    similarity = 0 
    count = 0 
    for index in range(tfidf.shape[1]): 
        col = tfidf.iloc[: , index] 
        for ind2 in range(index + 1, tfidf.shape[1]): 
            col2 = tfidf.iloc[: , ind2] 
            similarity = similarity + np.dot(col.values,col2.values)/(np.linalg.n
orm(col.values)*np.linalg.norm(col2.values)) 
            count = count + 1 
    return similarity/count

This method calculates the average pairwise cosine similarity for each song in the chart. Cosine similarity is a measure of

the similarity between two different songs x and y. It is calculated by similarity(x,y) = . This gives a value between 0

and 1, with 0 meaning the vectors are not related at all and 1 meaning the vectors are the same. If you want to read more
about cosine similarity you can look here: https://www.machinelearningplus.com/nlp/cosine-similarity/
(https://www.machinelearningplus.com/nlp/cosine-similarity/).

𝑦𝑥𝑇

|𝑥|∗|𝑦|

In [18]: def top_pairwise_cosine_similarity(tfidf): 
    similarity = 0 
    songs = [] 
    for index in range(tfidf.shape[1]): 
        col = tfidf.iloc[: , index] 
        for ind2 in range(index + 1, tfidf.shape[1]): 
            col2 = tfidf.iloc[: , ind2] 
            temp = np.dot(col.values,col2.values)/(np.linalg.norm(col.values)*np.
linalg.norm(col2.values)) 
            if temp > similarity: 
                similarity = temp 
                names = [col.name,col2.name] 
    return similarity, names

This method calculates and returns the cosine similarity for the most similar pair of songs in the chart and the names of the
two songs that were the most similar.

http://www.tfidf.com/
https://www.machinelearningplus.com/nlp/cosine-similarity/


In [19]: x = np.array(["top100", "pop", "country", "rap", "rock"])
y = []
y.append(average_cosine_similarity(create_tfidf(top100)))
y.append(average_cosine_similarity(create_tfidf(pop)))
y.append(average_cosine_similarity(create_tfidf(country)))
y.append(average_cosine_similarity(create_tfidf(rap)))
y.append(average_cosine_similarity(create_tfidf(rock)))
y = np.array(y)
sns.barplot(x=x, y=y)

This chart shows the average pairwise cosine similarity over the five different charts we are looking at. This means that the
cosine similarity was calculated bewteen every pair of songs in each chart and then the average was taken for all of those
values. It is interesting to see that rap has the most similarity between all of the songs in its top chart and then the second
highest similarity is pop. The top100, rock and country all have similar average simalirty scores. The fact that all of these
scors are relatively low as the largest one is less than .2 means that songs in the same genre or on the top100 chart are
often very different in their lyrics.

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7477e4a6d8>



In [20]: x = np.array(["top100", "pop", "country", "rap", "rock"])
y = []
z = {}
score,names = top_pairwise_cosine_similarity(create_tfidf(top100))
y.append(score)
z["top100"] = names
score,names = top_pairwise_cosine_similarity(create_tfidf(pop))
y.append(score)
z["pop"] = names
score,names = top_pairwise_cosine_similarity(create_tfidf(country))
y.append(score)
z["country"] = names
score,names = top_pairwise_cosine_similarity(create_tfidf(rap))
y.append(score)
z["rap"] = names
score,names = top_pairwise_cosine_similarity(create_tfidf(rock))
y.append(score)
z["rock"] = names
y = np.array(y)
sns.barplot(x=x, y=y).set_title("Cosine Similarity")
for chart in z: 
    print(chart + "'s most similar pair of songs is " + z[chart][0] + " and " + z
[chart][1])

The graph shows that the top100 has the most similar pair of songs by far than any other chart. This is due to the fact that
two different versions of the same song are both on the Billboard top100 chart, so this is a bit of an outlier and does not
normally occur. It is interesting to see that rap has the lowest max similarity between any pair of songs as it was the chart
that had the highest average pairwise similarity out of all of the charts. Also, the fact that the max similarity value is usually
around .5 shows that there is significant overlap between certain songs in the same genre.

top100's most similar pair of songs is Into The Unknown and Into The Unknown 
pop's most similar pair of songs is Panini and Take What You Want 
country's most similar pair of songs is I Hope and I Hope You're Happy Now 
rap's most similar pair of songs is Death and 223's 
rock's most similar pair of songs is Under The Graveyard and Legendary 



In [21]: def percent_of_top_100(songs): 
    count = 0 
    len = songs.shape[0] #num of rows 
     
    for index, row in songs.iterrows(): 
        if ((top100['Title'] == row['Title']) & (top100['Artist'] == row['Artist'
])).any(): 
            count += 1 
             
    return count / 100

In [315]: bins = (rock, pop, country, rap)
percents = [] 
 
for song in bins: 
    percents.append(percent_of_top_100(song)) 
     
percents = np.array(percents)
x = np.array(["rock", "pop", "country", "rap"]) 
     
ax = sns.barplot(x=x, y=percents)
ax.set_title('Song Genres vs Percentage in top 100')
ax.set_ylabel('Percentages')
ax

Word Frequency Analysis
In this section, we try to answer the research questions provided in the introduction. We start by getting the ten most
frequent words for the Top 100 and each genre chart. We then "clean" these most frequent words, removing the common
and generally "uninteresting" words. Further analysis is performed on frequent words. We then do analysis on profanity
present in these charts, models for predicting rank and Spotify popularity, and a model for guessing the Billboard Top 100
song given certain lyrics.

In [23]: def get_lyric_len(chart): 
    return create_term_doc_matrix(chart).sum(axis = 1, skipna = True)

Out[315]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff8d210d240>



In [24]: def get_chart_word_count(chart): 
    return create_term_doc_matrix(chart).sum(axis = 0, skipna = True) 
 
def find_most_freq_words(chart): 
    counts = get_chart_word_count(chart) 
    return counts.nlargest(10)  

In [85]: def create_word_freq_chart(chart): 
    freq = find_most_freq_words(chart) 
    freq = pd.DataFrame({'words':freq.index, 'word_cnt':freq.values}) 
    sns.barplot(x="words", y="word_cnt", data=freq).set_title("Most Common Words
 before Removal")

In [86]: create_word_freq_chart(rock)

In [87]: create_word_freq_chart(pop)



In [88]: create_word_freq_chart(country)

In [89]: create_word_freq_chart(rap)

In [90]: create_word_freq_chart(top100)



All of the words seem to be very similar to one another. The words 'the' and 'you' are consistently the top two words in all of
the barplots. This is expected considering those words are commonly used in English in general. Since these results were
all very similar to one another we decided to ignore common words in all songs in order to find the distinct words in song
lyrics.

In [39]: def find_most_freq_key_words(chart): #This removes unimportant words such as a, a
n, to, the, etc...  
    words = ['a', 'an', 'the','that','you','of', 'it', 'my', 'yeah', 'all', 'tha
t', 'to', 'on', 'and', 'oh', 'be', 'in', 'when', 're', 'but', 'can', 'for', 'so'] 
    stop_words = set(stopwords.words('english')) 
    other_words_to_remove = ['oh', 'yeah', 'like', 'go', 'ah', 'ft', 'ooh', 'caus
e', 'got', 'gonna', 'me', 'we', 'don', 'with', 'get', 'doo', 'let', 'wanna', 'us'
, 'la', 'uh', 'want', 'ayy'] 
    for word in other_words_to_remove: 
        stop_words.add(word) 
    counts = get_chart_word_count(chart) 
    counts = counts[~counts.index.isin(stop_words)] 
    return counts.nlargest(10)

In this method we use stopwords in order to remove some filler or 'fluff' words in english. This is a used commonly for
natural language processing. More information about stopwords can be found at https://pypi.org/project/stop-
words/#overview (https://pypi.org/project/stop-words/#overview).

This method runs the same way as the most_freq_words method expect that this method makes sure to ignore certain
words. The first few words we decided to ignore were articles (a, an, the); as stated earlier these words are stated very
commonly in all english text and seeing that these words are commonly used will not give us any new information. The next
few words we decided to ignore were prepositions (to, on, of, in, etc...). We want to ignore these words because these
words also, do not give much information about the actual topic, and meanings of song lyrics. The third set of words that
have been eliminated were interjections (oh, yeah, ah, doo, uh, etc...). The final sets of words were ones we just saw in all of
the song genres. Since we wanted to find songs that were unique to each genre, we decided to take out popular common
words such as 'you' or 'me'. These words are slightly more descriptive than the other words but again not descriptive
enough to be labeled a keyword.

In [79]: def create_word_key_chart(chart): 
    freq = find_most_freq_key_words(chart) 
    freq = pd.DataFrame({'words':freq.index, 'word_cnt':freq.values}) 
    sns.barplot(x="words", y="word_cnt", data=freq).set_title("Most Common Words
 after Removal")

This method runs exactly the same way as create_word_chart  except that this method ignores common English
words. After running this method on the different song genres, we hypothesize that the song lyrics will be much more
distinct from one another.

https://pypi.org/project/stop-words/#overview


In [80]: create_word_key_chart(rock)

In [81]: create_word_key_chart(pop)

In [82]: create_word_key_chart(country)



In [83]: create_word_key_chart(rap)

This shows that rap songs have a lot of profanity throughout. Half of the words in the top ten list are just profanity.

In [84]: create_word_key_chart(top100)

The Top 100 shows some profanity throughout, however, not nearly as much as the rap genre. This plot seems to be more
diverse in its word choice. The words 'know' and 'back' seem to be the most popular words used.

After looking at the most popular words throughout, we saw that many of the words would be considered profanity so we
wanted to see how much profanity was in each genre. At this point the bar plot will probably show that rap and Top 100
have the most profanity, however, looking at the specific percentages could be interesting.



In [51]: def get_profan_freq(chart): 
    freq = get_chart_word_count(chart) 
    profan = {} 
    percent = {} 
     
    for row in freq.index: 
        if predict([row]): 
            profan[row] = freq[row] 
            percent[row] = profan[row] / get_lyric_len(chart).sum(axis = 0, skipn
a = True) 
                
    return profan, percent

This method checks for profanity using the profanity-check  python library. Profanity-check uses a linear SMV model,
trained with clean and profan text strings. Many profanity checkers just a hard coded list of profane words and thus are less
accurate than this one. The profanity-check has a 95 percent accuracy. You can learn about this library here at
https://pypi.org/project/profanity-check/ (https://pypi.org/project/profanity-check/).

In [72]: x = np.array(["top100", "pop", "country", "rap", "rock"])
y = []
y.append(sum(get_profan_freq(top100)[1].values()))
y.append(sum(get_profan_freq(pop)[1].values()))
y.append(sum(get_profan_freq(country)[1].values()))
y.append(sum(get_profan_freq(rap)[1].values()))
y.append(sum(get_profan_freq(rock)[1].values()))
y = np.array(y)
sns.barplot(x=x, y=y).set_title("Profanity Frequency vs. Genre")

This graph shows the total percentage of lyrics in each chart that are classified as profane. As one would expect the rap
chart has a much higher percentage of profane words then any other chart and top100 is the next highest because it has
rap songs on it. Country has an extremely low percentage of profane words and rock also has a low percentage of profane
words.

Out[72]: Text(0.5, 1.0, 'Profanity Frequency vs. Genre')

https://pypi.org/project/profanity-check/


In [69]: def profan_cnt_graph(chart): 
    doc = create_term_doc_matrix(chart) 
    cols = doc.columns 
 
    for i in cols: 
        if not predict([i]): 
            cols = cols.drop([i]) 
 
    doc = doc[cols] 
    sum = doc.sum(axis = 1, skipna = True)  
    sum = pd.DataFrame({'Title':sum.index, 'profan_cnt':sum.values}) 
 
    sum['Rank'] = chart['Rank'] 
    sns.regplot(x="Rank", y="profan_cnt", data=sum).set_title("# Profane Words v
s. Rank")

This method allows us to create a graph comparing the rank of the song to the number of profanities throughout. We
wanted to see if there is any relationship between the two variables.

In [70]:  profan_cnt_graph(top100)

For the Top 100 songs, the trend seems to be that higher ranking songs tend to have less profanity. This makes sense, less
profanity makes the song easier to play in more places.



In [71]: profan_cnt_graph(rap)

For the rap songs, the trend again seems to be that the higher ranking songs have less profanity. This makes sense
because of the reasons stated previously however, the slope is way steeper than the Top 100 plot. Also, the number of
profanities per song is still higher in this bar plot than the Top 100. Rank 1 rap has around 7 counts of profanity where as
rank 1 for the Top 100 has near to 0.

In [297]: #Matching songs based off of lyrics
#A person enters n lyrics and we try to match which song in top100 is the best ma
tch
def find_best_match(words): 
    print(tfidf[tfidf.index.isin(words)].sum(axis = 0, skipna = True).nlargest(1
)) 
 
num = int(input("How many key words do you want to enter? "))
words = [] 
 
for i in range(num - 1): 
    words.append(input("Please enter a key word: "))
words.append(input("Please enter your final key word: "))   
 
find_best_match(words)

With all of this word frequency information, we thought that it would be interesting to try to match songs based off of the
lyrics. A person enters n words in the song and we try to match which song in the Top 100 is the best match. We do this
matching by looking at the word freq chart created previously and finding the song that has the highest percentage of lyrics
that contain the entered words.

How many key words do you want to enter? 3 
Please enter a key word: want 
Please enter a key word: Christmas 
Please enter your final key word: all 
Title 
All I Want For Christmas Is You    0.506153 
dtype: float64 



In [316]: def create_linear_model_frequent_words_ranks(chart): 
    m = create_term_doc_matrix(chart) 
    m['rank'] = chart['Rank'].values 
    m['spotify_popularity'] = chart['spotify_popularity'].values 
    stop_words = set(stopwords.words('english')) 
    other_words_to_remove = ['oh', 'yeah', 'like', 'go', 'ah', 'ft', 'ooh', 'caus
e', 'got', 'gonna', 'me', 'we', 'don', 'with', 'get', 'doo', 'let', 'wanna', 'us'
, 'la', 'uh', 'want', 'ayy'] 
    for word in other_words_to_remove: 
        stop_words.add(word) 
     
    stop_word_columns = [x for x in m.columns if x in stop_words] 
    better_m = m.drop(columns=stop_word_columns) 
    most_freq = find_most_freq_key_words(chart).index.tolist() 
 
    X = better_m[most_freq] 
    y_rank = m['rank'] 
    reg_rank = LinearRegression().fit(X, y_rank) 
     
    y_spotify_pop = m['spotify_popularity'] 
    reg_spot_pop = LinearRegression().fit(X, y_spotify_pop) 
     
    reg_rank_residual = reg_rank.predict(X) - y_rank 
    real_rank_predict_rank = sns.regplot(x=y_rank, y=reg_rank_residual) 
    plt.title("Real Rank vs Residual") 
    plt.xlabel("Real Rank") 
    plt.ylabel("Residual") 
    plt.show(real_rank_predict_rank) 
    print("The 10-fold cross validation score for chart ranking is: {}".format(cr
oss_val_score(reg_rank, X, y_rank, cv=10).mean())) 
 
    reg_spot_residual = reg_spot_pop.predict(X) - y_spotify_pop 
    real_spot_pop_predict_spot_pop = sns.regplot(x=y_spotify_pop, y=reg_spot_resi
dual) 
    plt.title("Real Spotify Popularity vs Residual") 
    plt.xlabel("Real Spotify Popularity") 
    plt.ylabel("Residual") 
    plt.show(real_spot_pop_predict_spot_pop) 
    print("The 10-fold cross validation score for Spotify popularity is: {}".form
at(cross_val_score(reg_spot_pop, X, y_spotify_pop, cv=10).mean()))

In this model, we tried to see if the makeup of the top 10 most frequent words in a song could be used to predict the chart
ranking or the Spotify popularity of that song. This was a focus question for the project. We found that for chart ranking, the
makeup of the top 10 most frequent words in a song has little-to-no impact. This was overly the case for most of the
genres, but in the case of the pop genre the model was closer to accurate for estimating rank. The story is different for
Spotify popularity of that song. For this ranking measurement, it was actually pretty close for most of the genres. This is an
interesting difference between the two ranking metrics as we displayed earlier, it seemed the two metrics were very closely
related.



In [317]: top100_model_rank = create_linear_model_frequent_words_ranks(top100)

The 10-fold cross validation score for chart ranking is: -144.08303485840526 

The 10-fold cross validation score for Spotify popularity is: -1.323404654507736
5 



In [318]: country_model_rank = create_linear_model_frequent_words_ranks(country)

The 10-fold cross validation score for chart ranking is: -1510.9494804072147 

The 10-fold cross validation score for Spotify popularity is: -27.77381194700957 



In [319]: rap_model_rank = create_linear_model_frequent_words_ranks(rap)

The 10-fold cross validation score for chart ranking is: -1095.7605426360697 

The 10-fold cross validation score for Spotify popularity is: -18.27575111445124
6 



In [320]: pop_model_rank = create_linear_model_frequent_words_ranks(pop)

The 10-fold cross validation score for chart ranking is: -192.9379512128733 

The 10-fold cross validation score for Spotify popularity is: -6.093570953447446 



In [321]: rock_model_rank = create_linear_model_frequent_words_ranks(rock)

The 10-fold cross validation score for chart ranking is: -249.39997254214558 

The 10-fold cross validation score for Spotify popularity is: -1.564121970972092
6 



In [248]: conn = sqlite3.connect('billboard100.db') 
 
df = pd.read_sql_query("SELECT * FROM billboard100", conn) 
 
display(df.head(10)) 
 
profanity_per_year = {} 
 
for year in range(2006,2020): 
    top100inYear = df[df["Year"] == year] 
    profane, _ = get_profan_freq(top100inYear) 
    profanity_per_year[year] = profane

index Rank Title Artist Year lyrics

0 0 1 Bad Day Daniel Powter 2006.0 Where is the moment we needed the most?
\nYou k...

1 1 2 Temperature Sean Paul 2006.0 The gyal dem Schillaci, Sean da Paul\nSo
me gi...

2 2 3 Promiscuous Nelly Furtado Featuring
Timbaland 2006.0 Am I throwin' you off?\nNope\nDidn't think

so\...

3 3 4 You're
Beautiful James Blunt 2006.0 My life is brilliant\n\nMy life is brilliant, ...

4 4 5 Hips Don't
Lie Shakira Featuring Wyclef Jean 2006.0 Ladies up in here tonight\nNo fighting (We

got...

5 5 6 Unwritten Natasha Bedingfield 2006.0 I am unwritten, can't read my mind\nI'm
undefi...

6 6 7 Crazy Gnarls Barkley 2006.0 I remember when\nI remember, I remember
when I...

7 7 8 Ridin' Chamillionaire Featuring Krayzie
Bone 2006.0 Hi. I'm the Rap Critic. Let's talk about

Chami...

8 8 9 SexyBack Justin Timberlake 2006.0 I'm bringin' sexy back (Yeah)\nThem other
boys...

9 9 10 Check On It Beyonce Featuring Slim Thug 2006.0 Swizz Beatz\nDC, Destiny Child (Slim
Thug)\n\n...



In [66]: profanity_in_top_charts = {}
for year in range(2006,2020): 
    p = profanity_per_year[year] 
    profanity_in_top_charts[year] = sum(p.values()) 
     
plt.bar(profanity_in_top_charts.keys(), profanity_in_top_charts.values())
plt.xlabel("Year")
plt.ylabel("# Profane Words")
plt.title("# Profane Words vs. Year")
plt.show()

To see the variation in the use of profanity over the years, we simply count the number of what are considered “bad words”
using a library called profanity-check . This count is calculated for 2006-2019, and plotted using matplotlib . We
can see a general upward trend in the use of profanity across the years, with a particularly interesting spike in 2017.

In [60]: doc = create_term_doc_matrix(df)
cols = doc.columns 
 
for i in cols: 
    if not predict([i]): 
        cols = cols.drop([i]) 
         
doc = doc[cols]
s = doc.sum(axis = 1, skipna = True)  
s = pd.DataFrame({'Title':s.index, 'profan_cnt':s.values}) 
 
s['Rank'] = df['Rank']



In [65]: plt.scatter(s["Rank"], s["profan_cnt"])
plt.xlabel("Rank")
plt.ylabel("Profane Words in Song")
plt.xticks([24, 49, 74])
plt.title("Profane Words in Song vs. Rank")
plt.show()

To examine the second relationship we compare the profanity count per song to that song’s ranking for all of the songs as a
whole, with the intention of revealing a relationship between profanity usage and song ranking. As can be seen in the plot
above, there does not appear to be an immediate relationship between profanity level and song ranking.



Insights and Conclusions
There are several interesting insights and answers we gathered from the work conducted above. First, let's aggregate our
answers to our original research questions:

How similar are songs on the Billboard Top 100 chart and genre specific charts to each other in terms of lyrics?
Answer: Somewhat similar! Once removing common words, words like 'know' and 'love' appear in almost all the top word
lists for each genre. As one would expect, the common or 'stop' words were very similar in frequency between the charts.
There were expected overlaps between closely related genres like rock and country, and the Top 100 most frequent words
list was, for the most part, an amalgamation of words from the other genres most frequent words lists.

How has the level of profanity present in songs on the Billboard Top 100 chart changed over the last 14 years, and
does this correlate with Billboard ranking? Answer: Over the past 14 years, profanity has increased in songs on the
Billboard Top 100 chart. The increase has been particularly high in the past couple of years. We found that profanity does
not correlate with the Billboard ranking, with a high skew towards 'no profanity'. This could be indicative to the fact that they
are in the Top 100, but we can not statistically affirm that without more data.

What are the most common words found in the Billboard Top 100 chart and genre specific charts? Are they the
same or does it differ based on genre? Answer: The most common words found in the current Billboard Top 100 chart
and genre specific charts can be found in the histograms in the analysis above. We found that it does differ based on genre,
but there is certainly overlap with common words.

Can we train a model to guess what the rank of a current song on the Billboard Top 100 chart is based solely on the
most frequent lyrics of its chart? Answer: No, not really. The linear regression model we built had a terrible cross
validation score for ranking. We plotted the residuals for each of the charts and, while there certainly was a range of
residuals depending on genre, they were all very high and clearly, readily observable that there was no strong relation.
Interestingly, there seemed to be a stronger correlation and ability to predict for Spotify popularity using the most frequent
lyrics of that chart.

Can we guess which song in the Billboard Top 100 chart somebody is describing by only having them input a few
words? Answer: Surprisingly, kind-of! We used the "interactive" (in the Jupyter notebook, not on the website) model to see
if it could guess the right song with just a few words and it most did if the lyrics given were genre-specific enough. An
example of this can be seen below the relevant code in the analysis above. This was mostly just an interesting question we
had that we wanted a quick answer to and did not bother to explore the data science here in great depth.

Does the popularity of a song on Spotify correlate to the ranking of the song on the Billboard Top 100? Answer:
Certainly. The well-ranked songs were also heavily listened to recently on Spotify. This was especially true with the very
well-ranked songs in the first through tenth ranking spots for all of the genre charts and the Top 100 chart. This was more so
the case with specific genres. There were, of course, outliers present, but the general trend was a high popularity rating
between 70 and 100 for most of the Top 100 and a similar range for the genre specific charts.

From these answers, we can provide the following "policy" recommendation to music artists trying to make it big: words
don't really matter, but your profanity is more accepted now. There is also a correlation between ranking and Spotify
popularity, so try to get more listens on Spotify and climb the Top 100 ladder (makes sense considering Billboard takes into
account streaming views). It's also important to note that it is better to be unique, as evidenced by the low similarities in
lyrics between songs on charts. If you are desperate to use the high frequency words in order to make it on the charts, try
writing a song called "Know Love" that includes an abundance of those words. We hope that this was an interesting and
useful read!

Extra Resources
Linear Regression Guide: https://towardsdatascience.com/a-beginners-guide-to-linear-regression-in-python-with-
scikit-learn-83a8f7ae2b4f (https://towardsdatascience.com/a-beginners-guide-to-linear-regression-in-python-with-

https://towardsdatascience.com/a-beginners-guide-to-linear-regression-in-python-with-scikit-learn-83a8f7ae2b4f


scikit-learn-83a8f7ae2b4f)
Inspiration and Similar Work: https://pudding.cool/2017/05/song-repetition/ (https://pudding.cool/2017/05/song-
repetition/)
Scikit Tutorial: https://scikit-learn.org/stable/tutorial/basic/tutorial.html (https://scikit-
learn.org/stable/tutorial/basic/tutorial.html)
Those Interested in NLTK: https://www.nltk.org/book/ (https://www.nltk.org/book/)

https://towardsdatascience.com/a-beginners-guide-to-linear-regression-in-python-with-scikit-learn-83a8f7ae2b4f
https://pudding.cool/2017/05/song-repetition/
https://scikit-learn.org/stable/tutorial/basic/tutorial.html
https://www.nltk.org/book/

